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Anisotropy and the approach to scaling in monodisperse 
reaction-limited cluster-cluster aggregation 
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Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 OHE, 
U K  

Received 4 November 1988 

Abstract. We have investigated several models of monodisperse reaction-limited cluster- 
cluster aggregation in two and three dimensions and have obtained the first systematic 
theoretical estimations of the overall anisotropy of cluster-cluster aggregates, and the way 
in which small clusters approach scaling. Our results are supported by simulation and 
confirm that in the monodisperse case the approach to scaling is very rapid and the clusters 
are significantly aspherical in aspect ratio. 

1. Introduction 

General cluster-cluster aggregation occurs when particles, and clusters of particles, 
move randomly and can stick rigidly together to form larger clusters. The case when 
the clusters stick on first contact (diffusion-limited case) was the first to be studied 
(Meakin 1983, Kolb er a1 1983). Botet et a1 (1984) introduced a simplification by 
considering monodisperse or hierarchical aggregation in which a set of clusters of 
equal mass is taken (initially a set of monomers) and the clusters allowed to aggregate 
in pairs to form a new set. The new clusters are then themselves allowed to aggregate 
in pairs and so on. This approximation is applicable to cases where the cluster size 
distribution is approximately monodisperse or the kernel for aggregation in the 
Smoluchowski equation (von Smoluchowski 1917, see also Ziff et a1 1985) is strongly 
biased in favour of the aggregation of clusters of the same size. This model was first 
introduced by Sutherland (1970) for a slightly different purpose, and has been studied 
in the diffusion-limited regime by Botet et a1 (1984) and Jullien er a1 (1984). 

Kolb and Jullien (1984) allowed the probability of clusters sticking on contact to 
be less than one. If this probability is small (studied in detail by Meakin and Family 
(1987)) (there might be a high-energy barrier to sticking, for instance) the clusters 
come into contact many times before sticking and can explore the entire set of contact 
configurations without bias. Numerical simulations of this type of aggregation (reac- 
tion-limited case) have been studied by Jullien and Kolb (1984) for the monodisperse 
case and Brown and Ball (1985) for the polydisperse case. 

The result of all this numerical simulation has been that the clusters obtained are 
observed to obey a scaling law consistent with their being fractal objects (Mandelbrot 
1982) at least on size scales greater than the individual cluster particle sizes but less 
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than the overall cluster size. The fractal dimensions so obtained depend on which 
model is used to generate the clusters. For clusters of small size we expect departures 
from this scaling law. The clusters are not spherical objects but exhibit definite long 
and short axes. 

A model for monodisperse aggregation based on representing the clusters as spheres 
has been given by Ball and  Thompson (1984). This model gives good estimates of the 
fractal dimensions in both the diffusion-limited and reaction-limited regimes. 

The purpose of this paper is to extend the spherical model of Ball and  Thompson 
(1984) to describe the shape of the clusters and to address the problem of the approach 
to scaling behaviour. In this paper we will consider only monodisperse reaction-limited 
cluster-cluster aggregation. 

Although the spherical model discussed by Ball and Thompson (1984) gives good 
estimates of the fractal dimension of such clusters, it gives no information on their 
shape or the approach to scaling behaviour. Their model is essentially a one-parameter 
model, by introducing more parameters we can get more information out of the model. 
Not only can we get the expected values of the parameters in the scaling limit, but we 
can study the approach to scaling-this is achieved by putting different values of the 
parameters into the model, and observing how they approach the scaling limit. The 
parameters chosen in this paper are the spans of the clusters along the principal axes 
of the inertial tensor (in practice, we used the second-moment tensor of the mass 
distribution, to which the inertial tensor is closely related). We assume that these spans 
should differ very little from the actual maximum and minimum spans of the clusters. 
We call these spans a and b in two dimensions, with subscripts if necessary. 

Although our model is now richer than the spherical model, we will still have to 
make severe approximations to force ‘closure’, to relate aggregates back to the original 
description. The first approximation we make is on the set of clusters of a given mass. 
There will in general be a distribution of spans in this set, and  we are taking a particular 
pair of values ( a ,  b )  for the spans as representative of the set (this approximation is 
also present in the spherical model). We apply the same approximation for the inertial 
tensor. The set of clusters is represented by these spans and this inertial tensor, which 
we can envisage as an  ellipse (although we really only use the spans of such an  ellipse). 
Note that the inertial tensor is not equivalent to the inertial tensor of a solid ellipse 
of the same spans because the internal mass distribution is not uniform. 

We model the aggregation process by sticking two ellipses together. The problem 
now is that there are many different configurations of mutual contact for two ellipses. 
This problem is not present in the spherical model since there is only one way to stick 
two discs together. The different configurations give rise to different spans of the 
resulting object-there is a distribution of spans over the set of mutual configurations 
and  we are required to pick two values for the spans as being representative of this 
distribution, in order to be consistent with the first approximation discussed above. 

Our next approximations are to pick out a subset of this set of configurations for 
consideration, decide what relative weighting to give to the different configurations, 
and  finally find a pair of values ( a ,  b )  representative of the distribution of spans. The 
many different ways of doing this give rise to many different models, two of which 
are outlined below. 

The new pair of spans for the aggregate object are, in all but the simplest cases, 
non-linear functions of the spans of the original ellipses. These constitute recurrence 
relations for the cluster parameters. We can both extract the limiting scaling behaviour 
and quantify the approach to scaling from these. 
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2. T model: modal configuration 

The modal configuration in two dimensions, i.e. that having the greatest relative 
weighting, was considered to be that in which the long axis of one ellipse abuts against 
the short axis of the other ellipse in a T configuration (figure 1). The weight of such 
a configuration is certainly a local maximum-the spans of the object d o  not depend 
on slight variations away from the T configuration. The T model uses only this modal 
configuration in the calculation, and as a consequence is simple and linear. 

/ 

/' 

a'.a+b 

a'. Q 

Figure 1. The T model: the modal configuration for two ellipses in mutual contact in d = 2. 

If the two original ellipses have spans a and b, then the T object will have spans 
a'  and b' given by 

a ' = a + b  b ' = a  

or, in matrix form, 

In the scaling limit we require the new object to be simply a scaled version of the 
original, i.e. a ' / a  = b'/b.  This is equivalent to finding the eigenvalues and  eigenvectors 
of the matrix (choosing the sensible ones). 

This allows us to calculate the fractal dimension (from the eigenvalue) and  the 
shape (from the eigenvector): 

DF = In 2/ln T a / b = r  

where r = golden mean = $( 1 +a). 
By introducing the radii of gyration about the long and short principal axes to 

characterise the inertial tensor, we can calculate their expected ratio in the scaling 
limit. This ratio turns out to be different from the ratio a / b :  

RL/ Rs = r3I2. 

The actual values of these parameters are collected in table 1. 
The approach to scaling can be analysed, and is seen to depend on that eigenvalue 

of the matrix which was not used for the fractal dimension. The leading correction 
to scaling is contained in the following formula for the long span: 

a - M'  D ( l  i k M - O  t.. .) (1) 
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Table 1. Data for cluster aggregation in two dimensions. The computer simulation and 
models are discussed in the text. A figure in brackets after a result is an estimate of the 
error in the final digit of that result. The parameters refer to fractal dimension (DF) ,  cluster 
span ratio ( a l b ) ,  ratio of radii of gyration ( R L / R s ) ,  and approach to scaling ( & I $ ;  see 
equation (2 )  in the text). 

Computer simulation 1.55 (1) 1.78 (2 )  2.23 ( 2 )  0.7-1.6 
T model 1.44 1.62 2.06 1.39 a/log 2 
Averaged model 1.54 1.76 1.98 2.30 n/log 2 

where 8 = 2 log 7/log 2 = 2/ DF. A similar result is obtained for b. The sign of the 
correction alternates with each cycle of the aggregation process. In the particular case 
of the T model in two dimensions, the leading-order correction is the only correction 
term to a and b, and (1) is exact. 

We can rewrite the correction formula (1) in the following way: 

a - M ” D [ l  + kM-‘ COS(#J  log M - 40) +. . .I 
where 4 = .rr/log 2 and & is an uninteresting constant. The reason for this more 
complicated formula will become obvious when we discuss the modal configuration 
in three dimensions, where a non-trivial value of 4 occurs. The values of 8 and 4 are 
given in table 1 and the theoretical behaviour is shown in figure 3 .  Our large value of 
8 implies a very rapid approach to scaling, consistent with the success of relatively 
small simulations in reproducing the scaling of large experimental clusters. 

The correction terms for the radii of gyration are complicated by the initial values 
given to the monomers. Unless these are matched to the initial spans of the monomers, 
there will be a constant term in the inertial tensor, giving rise to a correction term 
showing straightforward decay (no oscillations) with 8 = 2/ D. If the constant is 
dropped, the leading term coming purely from the model is an oscillating correction, 
having the same value of 8 (namely 2 / D ) .  

In our simulations we studied the ratio a / b ,  since this is expected to go to a 
constant, with the same leading-order correction as a and b individually. It is easier 
to extract the approach to scaling from the computer data when the quantity being 
considered tends to a constant. It is still, however, very difficult in practice to measure 
8 and 4. 

3. Averaged model 

An obvious generalisation of the T model which is still mathematically tractable is to 
consider the subset of configurations where any axis of the first ellipse abuts against 
any axis of the second. In  the absence of evidence to the contrary, we weight each 
configuration equally. It should be emphasised that such a weighting is still an arbitrary 
choice, however. When all the degeneracies are counted, we are left with three distinct 
configurations of which the T carries twice the weight of the other two (figure 2). A 
complication arises for the configuration in which the two short axes are in contact 
(configuration A in figure 2),  in that the spans of the resulting object ‘cross over’ as 
the ratio a /  b of the spans of the original ellipses is increased past the value two. To 
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Figure 2. The three configurations in the averaged model. The relative weights of A, B 
and C are 1 : 2 : 1 .  

Table 2. Data for cluster aggregation in three dimensions. The computer simulation and 
models are discussed in the text. A figure in brackets after a result is an estimate of the 
error in the final digit of that result. The parameters refer to fractal dimension ( DF), cluster 
span ratios ( a / c ,  b / c ) ,  and approach to scaling (e, 6 ;  see equation (2 )  in the text). 

~ ~~ ~ ~~ 

Computer simulation 1.97 (21 2.11 (2 )  1.38 (2)  0.7-1.9 
Modal configuration 1.81 2.15 1.47 0.83 1.29 
Averaged model 1.90 2.06 1.37 2.86 7r/log 2 

2 0  

2 0 \p;.- I \ .-- _- ___.___.____-.-_- 

s15  ” 

, , , ,  

1 0  
1 10 100 1000 

Number of porticles 

Figure 3. Cluster span ratio a /  b against number of particles in two dimensions. The 
simulation consisted of 102 400 particles aggregated on a square lattice to form 100 clusters 
o f  1024 particles. The error bars are one standard deviation. The two models are discussed 
in the text. The full curve represents the results of the computer simulation, the broken 
curve represents the T model and the dotted curve represents the averaged model. 
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conform with our implicit requirement that a’> 6‘ (given a > 6 )  we divide the a / b  
line into two intervals (1,2) and ( 2 ,  a)). This means the model is non-linear. 

We take the new overall spans to be a straightforward average of the spans of the 
composite objects, with the weighting indicated previously. Note that since we are 
really only concerned with the ratio of spans, we could average over the ratios of 
spans, rather than find the ratio of the average spans. This amounts to choosing 
different fundamental parameters in the model-namely one span, and  the aspect ratio. 
There is no objection to this, but for simplicity we remain with the spans, and use the 
ratio of the averages. For consistency, the data from the computer simulation was also 
a ratio of averages. 

Performing an analysis similar to that for the T model, and averaging, we obtain 
a different matrix for each interval. Fortunately, when we calculate the ratio a / 6  from 
the eigenvectors of each matrix, only one lies in its own interval on the a / b  line, so 
we can unambiguously choose that limit point to the scaling behaviour. The results 
of the calculations are shown in table 1. 

In the approach to scaling, for small deviations, we can use the other eigenvalue 
of the matrix corresponding to the stable limit point to calculate the leading correction 
term, which turns out to be similar to that for the T model and  is shown in table 2 .  
For large deviations the non-linearity of the model admits of no simple result, but we 
can consider individual cases. The behaviour starting from monomers of equal spans 
is shown in figure 3. 

4. Three-dimensional models 

The model is easily extended to three dimensions-the set of clusters is modelled by 
an  ellipsoid with three spans, a, b and c, along the three principal axes. 

There are twelve distinct ways of joining two ellipsoids so that their principal axes 
are parallel, and the contact point lies on an  axis of both ellipsoids. Six of these 
configurations have twice the weight as the others; however, two of the six give rise 
to the same spans of the composite object, so this can be considered to be the modal 
configuration. 

Doing an analysis for each distinct configuration, we find many instances where 
the spans ‘cross over’ and  we treat these in the same way as the two-dimensional 
model. Averaging as before, we find that the ( a / c ,  6 /c )  plane is divided into seven 
separate regions, with a different matrix for each (figure 4). Remarkably, when the 
limit points ( a / c ,  b / c )  are calculated from the eigenvectors of the matrices, only one 
is found to lie in its own region. This was taken to be the limit point for the model. 
The results for the fractal dimension and  ratio of spans are set out in table 2 .  

The modal configuration mentioned above corresponds to the shortest axis of one 
ellipsoid abutting against the longest axis of the other. There are then two possible 
orientations of the second ellipse relative to the first (their middle length axes can run 
parallel o r  perpendicular) but the spans of the composite object are the same for both. 
This configuration is the analogue of the T in two dimensions. The results for the 
fractal dimension and ratio of spans, using this modal configuration alone, are shown 
in table 2 .  

The approach to scaling is calculated in the same way as in two dimensions. In 
the averaged model, for small deviations, the leading-order correction comes from the 
second-largest eigenvalue (the fractal dimension comes from the largest), and  exhibits 
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Figure4. The ( a / c ,  b / c )  plane is divided into seven separate regions in the averaged model. 
There is a different matrix in each region relating the spans of the new object to the spans 
of the old, but only the matrix in region I1 has a limit point lying on its own region. Note 
that values in the plane are restricted to a wedge by the convention a 2 b 2 c. 

oscillating decay like the two-dimensional models. The general behaviour for large 
deviations is complex because of the non-linear nature of the model, but can be easily 
calculated for specific cases. In the modal configuration, the matrix has two second- 
largest eigenvalues, which are complex conjugates (the matrix is real but non- 
symmetric). This leads to a non-trivial value for + in (2) so (2) is now exact since all 
three eigenvalues have been used. The values of 8 and + for both models are collected 
in table 2 and the theoretical curves, starting from monomers of equal spans, are shown 
in figure 5.  The small value of 8 for the modal configuration, and the non-trivial value 
of + are responsible for the relatively wild behaviour of the theoretical curve of the 
modal configuration. 

5. Computer simulations 

In two dimensions several computer simulations were performed on both square and 
hexagonal lattices, the largest of which involved aggregating 102 400 particles to form 
100 clusters of size 1024 particles. The results were collated and are compared with 
those of the models in table 1. As can be seen, the comparison is good, although the 
averaged model performs better than the T model. The results from the hexagonal 
lattice simulation were found to agree with those from the square lattice simulation 
for cluster sizes greater than four particles. The data for the approach to scaling of 
the ratio of spans a / b  is plotted in figure 3, alongside the theoretical predictions of 
the models. 

In three dimensions computer simulations on a simple cubic lattice were performed, 
also involving a run of 102 400 particles aggregating to form 100 clusters of size 1024. 
The results are in table 2 for comparison with the results of the three-dimensional 
models described above. The results of the averaged model compare well with the 
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Figure 5. Cluster span ratios a / c  and b / c  against number of particles in three dimensions. 
The simulation consisted of 102 400 particles aggregated on a simple cubic lattice to form 
100 clusters of 1024 particles. The error bars are one standard deviation. The upper curves 
are for the ratio a / c  and the lower for b/c .  The models are discussed in the text. The full 
curve represents the results of the computer simulation, the broken curve represents the 
modal configuration, and the dotted curve represents the averaged model. 

computer simulation; those of the modal configuration are not as good. The data for 
the ratios of spans a / c  and b / c  showing the approach to scaling is plotted in figure 
5 ,  again with the theoretical predictions. 

If we assume that (2) provides a valid description of the approach to scaling we 
could measure the values of 0 and C#I from the simulation data. In practice we could 
only extract an approximate range for 0. It proved too difficult to measure 4 from 
the available data, but qualitatively there appears to be some evidence of oscillations 
in both d = 2  and d = 3  suggesting #I has a value near .ir/log2. 

On a technical note, the aggregation was performed by producing a list of surface 
sites of one cluster, then placing a particle of the second cluster in a surface site and 
accepting the configuration if the clusters do not overlap. The alternative is to repeatedly 
place the clusters close together (in a box, for example) and accept the first configuration 
in which the clusters are in contact but not overlapping. The difference between the 
two methods lies in configurations with multiple contacts. Such a configuration can 
be generated in several ways by the first method, but in only one way by the second. 
The probability of obtaining such configurations is enhanced in proportion to the 
number of contacts by using the surface-sites method, which seems closer to physical 
reality. However, the difference between the two methods does not appear to have 
much influence on the scaling properties (Kolb and Jullien 1984, Meakin and Family 
1987). An advantage of the surface-sites method is that it is easier to go off lattice 
than the random-position method. 
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6. Conclusions 

We have described several models which are extensions of the spherical model of Ball 
and Thompson (1984) and which describe monodisperse reaction-limited cluster-cluster 
aggregation. The models predict fractal dimensions and cluster span ratios which agree 
quite well with data from numerical simulations. We are also able to extract information 
on the approach to scaling and this suggests a more general form for the approach to 
scaling might be relevant, involving oscillations of the leading-order corrections as 
well as a power-law decay with increasing cluster mass. Although it has proved difficult 
to quantify the approach to scaling for real clusters formed in the simulations, there 
is, however, a broad agreement between the models and the simulation data. Future 
work will involve finer testing of the assumptions in the models, particularly the rather 
ad hoc weighting given to configurations in the averaged models, performing numerical 
simulations off lattice and extending the models to describe polydisperse aggregation. 
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